Drifting States and Synchronization Induced Chaos in Autonomous Networks of Excitable Neurons
نویسندگان
چکیده
The study of balanced networks of excitatory and inhibitory neurons has led to several open questions. On the one hand it is yet unclear whether the asynchronous state observed in the brain is autonomously generated, or if it results from the interplay between external drivings and internal dynamics. It is also not known, which kind of network variabilities will lead to irregular spiking and which to synchronous firing states. Here we show how isolated networks of purely excitatory neurons generically show asynchronous firing whenever a minimal level of structural variability is present together with a refractory period. Our autonomous networks are composed of excitable units, in the form of leaky integrators spiking only in response to driving currents, remaining otherwise quiet. For a non-uniform network, composed exclusively of excitatory neurons, we find a rich repertoire of self-induced dynamical states. We show in particular that asynchronous drifting states may be stabilized in purely excitatory networks whenever a refractory period is present. Other states found are either fully synchronized or mixed, containing both drifting and synchronized components. The individual neurons considered are excitable and hence do not dispose of intrinsic natural firing frequencies. An effective network-wide distribution of natural frequencies is however generated autonomously through self-consistent feedback loops. The asynchronous drifting state is, additionally, amenable to an analytic solution. We find two types of asynchronous activity, with the individual neurons spiking regularly in the pure drifting state, albeit with a continuous distribution of firing frequencies. The activity of the drifting component, however, becomes irregular in the mixed state, due to the periodic driving of the synchronized component. We propose a new tool for the study of chaos in spiking neural networks, which consists of an analysis of the time series of pairs of consecutive interspike intervals. In this space, we show that a strange attractor with a fractal dimension of about 1.8 is formed in the mentioned mixed state.
منابع مشابه
Dynamics of complex autonomous Boolean networks
Springer-Verlag Gmbh Feb 2015, 2015. Buch. Book Condition: Neu. 244x161x20 mm. Neuware This thesis focuses on the dynamics of autonomous Boolean networks, on the basis of Boolean logic functions in continuous time without external clocking. These networks are realized with integrated circuits on an electronic chip as a field programmable gate array (FPGA) with roughly 100,000 logic gates, offer...
متن کاملLinear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control
In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...
متن کاملSynchronization analysis of complex dynamical networks with hybrid coupling with application to Chua’s circuit
Complex dynamic networks have been considered by researchers for their applications in modeling and analyzing many engineering issues. These networks are composed of interconnected nodes and exhibit complex behaviors that are resulted from interactions between these nodes. Synchronization, which is the concept of coordinated behavior between nodes, is the most interested behavior in these netwo...
متن کاملSpatio-Temporal Chaos in Simple Coupled Chaotic Circuits
In this paper, simple autonomous chaotic circuits coupled by resistors are investigated. By carrying out computer calculations and circuit experiments, irregular self-switching phenomenon of three spatial patterns characterized by the phase states of quasi-synchronization of chaos can be observed from only four simple chaotic circuits. This is the same phenomenon as chaotic wandering of spatial...
متن کاملCluster synchronization and spatio-temporal dynamics in networks of oscillatory and excitable Luo-Rudy cells.
We study collective phenomena in nonhomogeneous cardiac cell culture models, including one- and two-dimensional lattices of oscillatory cells and mixtures of oscillatory and excitable cells. Individual cell dynamics is described by a modified Luo-Rudy model with depolarizing current. We focus on the transition from incoherent behavior to global synchronization via cluster synchronization regime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2016